

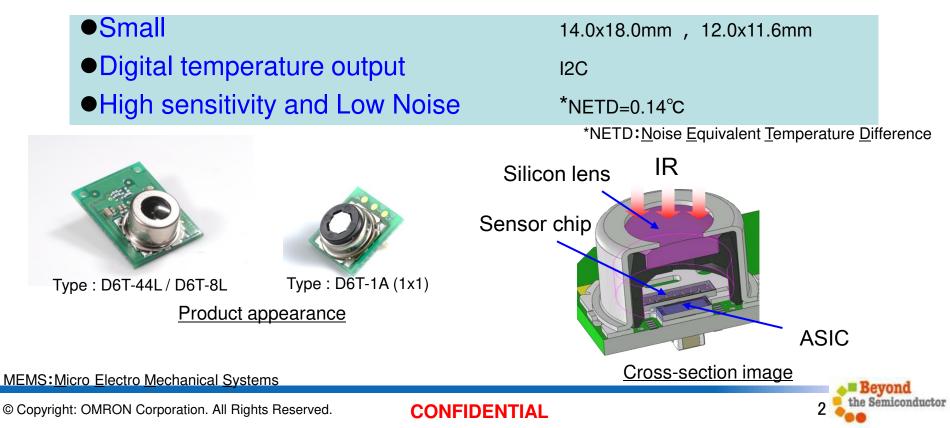
# **D6T Product training**



© Copyright: OMRON Corporation. All Rights Reserved.

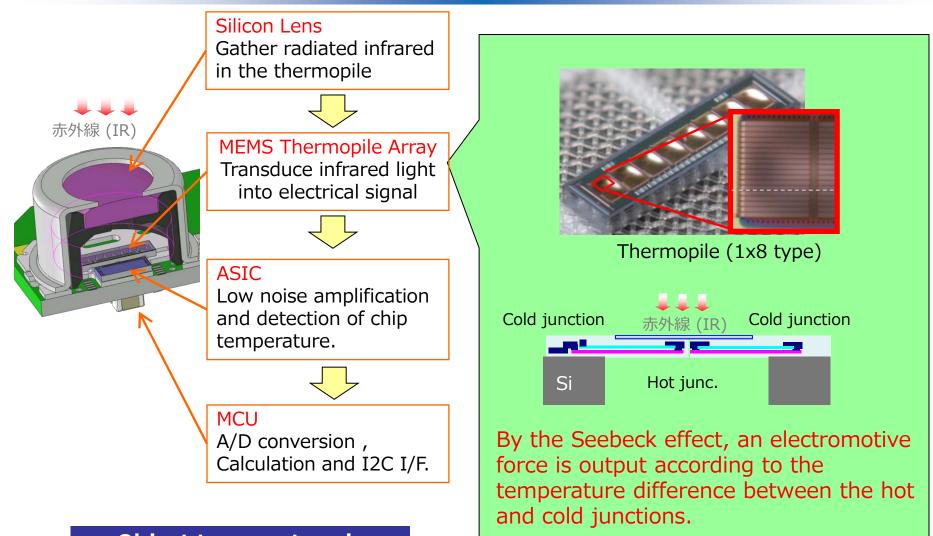
## OMRON's MEMS IR Sensor

### **Features**


Measure the surface temperature of the material by detecting intensity of the infrared radiation.

OMRON

Best fit for human detection and non-contact temperature measurement.


### **Technology**

Incorporate state-of-the-art MEMS thermopile, custom designed sensor ASIC and signal processing micro processor and algorithm into tiny package.



## Structure of D6T

OMRON



Object temperature is output in digital.

3 the Semiconductor

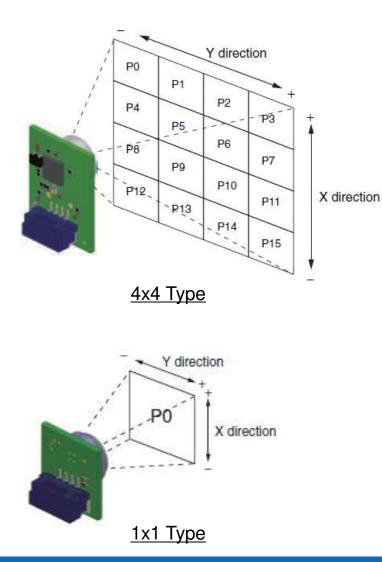
© Copyright: OMRON Corporation. All Rights Reserved.

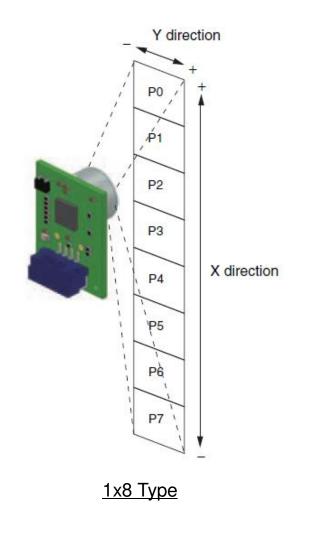
## Lineup and main specifications

## OMRON

the Semiconductor

Δ


| Model                                            | 1x1 : D6T-1A-02        | 1x1 : D6T-1A-01        | 1x8 : D6T-8L-09                       | 4x4 : D6T-44L-06                        |  |  |  |
|--------------------------------------------------|------------------------|------------------------|---------------------------------------|-----------------------------------------|--|--|--|
| Element type                                     | 1)                     | ×1                     | 1x8                                   | 4x4                                     |  |  |  |
| Outline                                          | L:12.0mm x W:11        | 6mm x H:9.2mm          | L:12.0mm x<br>W:11.6mm x<br>H:10.7mm  | L:18.0mm x<br>W:14.0 mm x<br>H:8.8mm    |  |  |  |
| Appearance                                       |                        |                        |                                       |                                         |  |  |  |
| Object temperature detection range               | -40℃ ~ +80℃            | +5℃ ~ +50℃             | +5°C $\sim$ +50°C                     | +5 $^{\circ}$ C $\sim$ +50 $^{\circ}$ C |  |  |  |
| Operating<br>temperature range                   | -40℃ ~ +80℃            | 0℃ ~ +60℃              | $0^{\circ}$ C $\sim$ +60 $^{\circ}$ C | 0∼ +50℃                                 |  |  |  |
| View angle<br>X = X direction<br>Y = Y direction | X = 26.5°<br>Y = 26.5° | X = 58.0°<br>Y = 58.0° | X = 54.5°<br>Y = 5.5°                 | X=44.2°<br>Y=45.7°                      |  |  |  |
| Power supply voltage                             | DC5.0V ±0.5V           |                        |                                       |                                         |  |  |  |
| Communication form                               | Digital (I2C)          |                        |                                       |                                         |  |  |  |


© Copyright: OMRON Corporation. All Rights Reserved.

## Detection area for each pixel

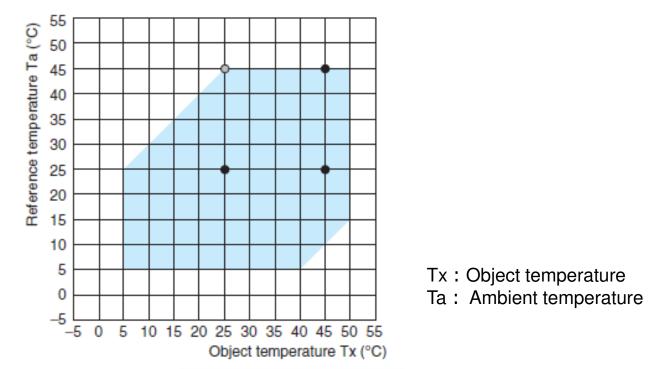


### Image of field of view








© Copyright: OMRON Corporation. All Rights Reserved.

### Object temperature output accuracy

| Accuracy 1   | $\begin{array}{l} \pm 1.5 \ ^{\circ}C \ \text{max.} \\ (1) \ \text{Tx} = 25^{\circ} \ \ \text{C}, \ \text{Ta} = 25^{\circ} \ \ \text{C} \\ (2) \ \text{Tx} = 45^{\circ} \ \ \text{C}, \ \text{Ta} = 25^{\circ} \ \ \text{C} \\ (3) \ \text{Tx} = 45^{\circ} \ \ \text{C}, \ \text{Ta} = 45^{\circ} \ \ \text{C} \end{array}$ | Adjustment point |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| O Accuracy 2 | <b>±3.0 °C</b> max.<br>(4) Tx = 25° C, Ta = 45° C                                                                                                                                                                                                                                                                            | Inspection point |

#### **Object Temperature Detection Range**

D6T-44L-06, D6T-8L-06, D6T-8L-09, D6T-1A-01





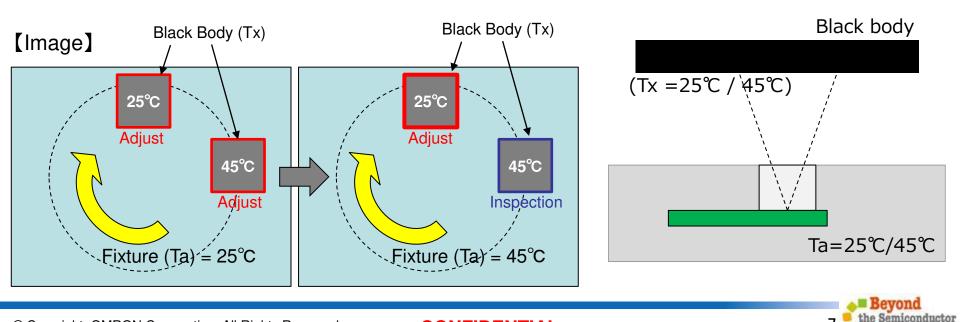
OMRON

© Copyright: OMRON Corporation. All Rights Reserved.

## Adjustment method

# OMRON

### For mass production equipment

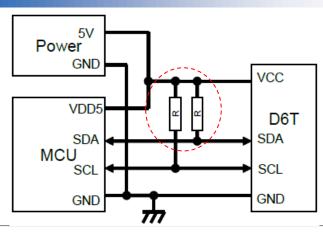



Based on the adjustment data, write the sensor temperature correction value.

Accuracy of the sensor is dependent on the adjustment.



If temperature accuracy of Ta and Tx can improve, accuracy of the sensor is improved.




© Copyright: OMRON Corporation. All Rights Reserved.

# I2C port setting

### **Connector pin**

| 1 | GND | Ground                   |
|---|-----|--------------------------|
| 2 | VCC | Power source (5V +/-10%) |
| 3 | SDA | I2C(5V) Data line        |
| 4 | SCL | I2C(5V) Clock line       |



Connect the open-drain SDA / SCL terminal to a pull-up resistor. (Most case: About 3k to  $10k\Omega$ )

SCL SDA VCC

Use the specified connector (GHR-04 from JST) .

### I2C port parameters

| Device Address  | 7bit : 0001_010b                             |
|-----------------|----------------------------------------------|
|                 | 8bit (with R/W bit) Read : 15h , Write : 14h |
| Data bit width  | 8bit (MSB-first)                             |
| Clock Frequency | max 100kHz                                   |

Slave address can not be changed.

If the customer is connecting multiple sensors, use the I2C bus switch IC.

© Copyright: OMRON Corporation. All Rights Reserved.

#### **CONFIDENTIAL**



Beyond the Semiconductor

## I2C port data chart



| Start | Address<br>W         | Command<br>W (4Ch) | Repeat<br>Srart | Address<br>R | PTAT<br>(Lo) | PTAT<br>(Hi) | P0<br>(Lo) | P0<br>(Hi) |
|-------|----------------------|--------------------|-----------------|--------------|--------------|--------------|------------|------------|
|       | P1 to P13<br>(Lo,Hi) |                    | P14<br>(Lo)     | P14<br>(Hi)  | P15<br>(Lo)  | P15<br>(Hi)  | PEC        | Stop       |
|       |                      |                    |                 |              | Outpu        | t data : 35  | bytes      |            |

| Start | Address<br>W        | Command<br>W (4Ch) | Repeat<br>Srart | Address<br>R | PTAT<br>(Lo)      | PTAT<br>(Hi)           | P0<br>(Lo) | P0<br>(Hi) |
|-------|---------------------|--------------------|-----------------|--------------|-------------------|------------------------|------------|------------|
|       | P1 to P5<br>(Lo,Hi) |                    | P6<br>(Lo)      | P6<br>(Hi)   | P7<br>(Lo)        | P7<br>(Hi)             | PEC        | Stop       |
|       |                     |                    |                 | (b) 8        | Outpu<br>ch (D6T- | t data : 19<br>-8L-06) | bytes      |            |

| Start | Address<br>W | Command<br>W (4Ch) | Repeat<br>Srart | Address<br>R | PTAT<br>(Lo) | PTAT<br>(Hi) | P0<br>(Lo) | P0<br>(Hi) | PEC | Stop |
|-------|--------------|--------------------|-----------------|--------------|--------------|--------------|------------|------------|-----|------|
|       |              |                    |                 |              | L            | Outpu        | t data : 5 | bytes      |     |      |

(c) 1ch (D6T-1A-01/D6T-1A-02)

PTAT : The value of the reference temperature, inside the sensor module.
Pn : Measured value. (Object temperature)
PEC : Pocket error check

For other each term, please see the I2C specification.



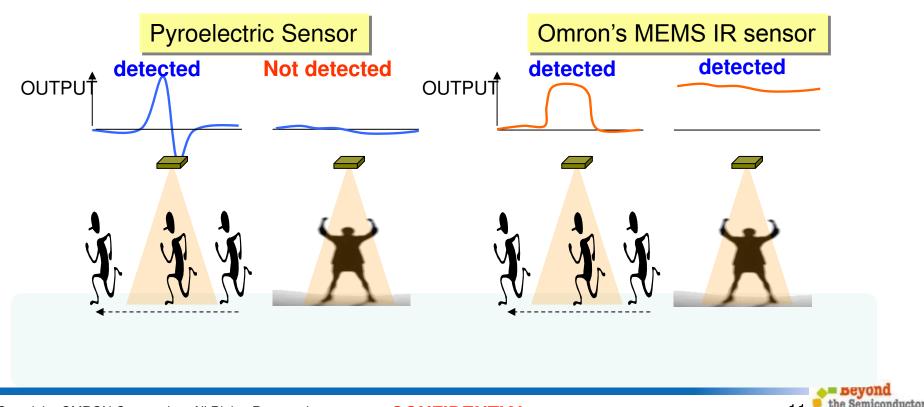


### Non-contact temperature sensing

Refrigerator Air-Conditioner Machine Cooling the warm foods rapidly for keeping the fresh foods. Temperature control for floor temperature. Detecting the Abnormal heat. (over heat)

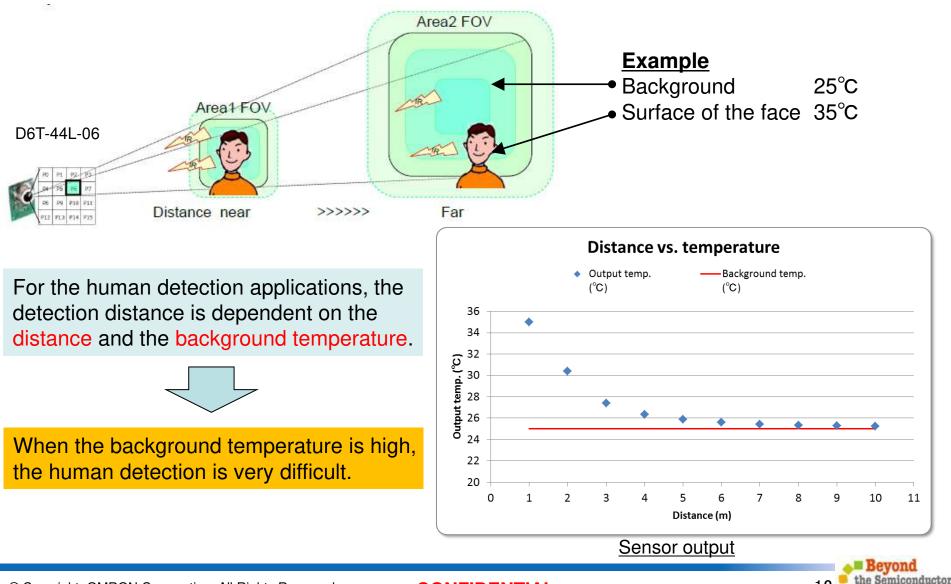
### Human detection

BEMS<br/>(PAC, Lighting)Detecting the human body for saving energy and comfortable.TV/PCDetecting the human body for Screen Saving.SecurityDetecting the human body at dark area.


### Motion control • • It can operate with dirty hands.

KitchenWater/Fan level control.Home ApplianceNon-contact display operation. (Refrigerator, microwave oven)

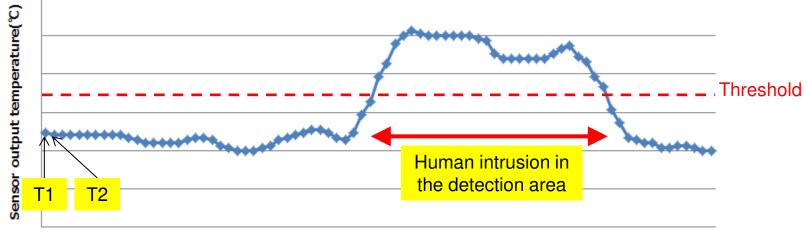
#### Advantage of Omron MEMS IR Sensor


D6T can also be used for detecting the presence of human beings. Omron's non-contact temperature sensor can solve the shortcomings of a conventional pyroelectric sensor, which cannot catch the signal of a stationary person because the sensor detects the change of signal.

OMRO

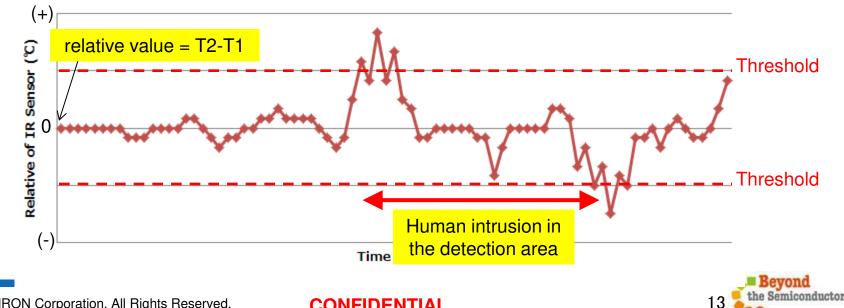


# Changing factor of measurement by distance **Omron**


When the distance is far, the ratio of the object is small.



© Copyright: OMRON Corporation. All Rights Reserved.


#### Examples of human detection by each pixel OMRON

1) Threshold of the sensor output temperature.

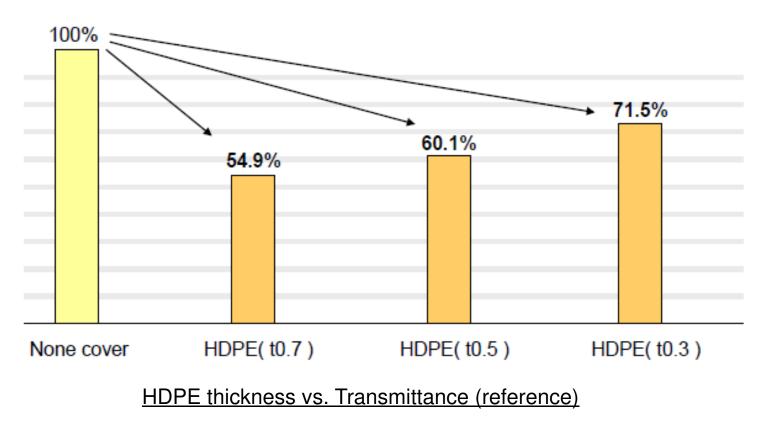


Time (sec)

2) Judgment of the relative temperature difference.



© Copyright: OMRON Corporation. All Rights Reserved.


OMRON

the Semiconductor

14

If you opt to put a cover over the sensor, High-density polyethylene (HDPE, grade far infrared transmission) is a good cover material option.

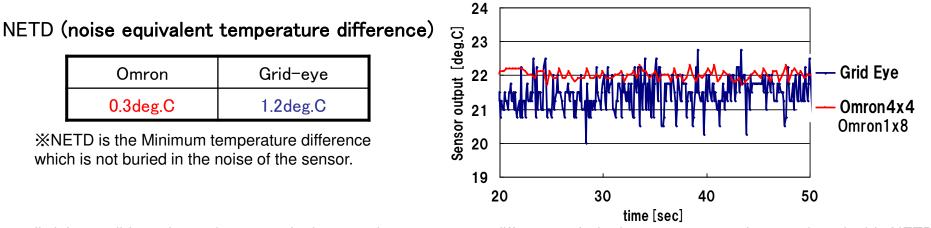
If the cover is thick, the transmittance decreases. (as shown in the pictured below)



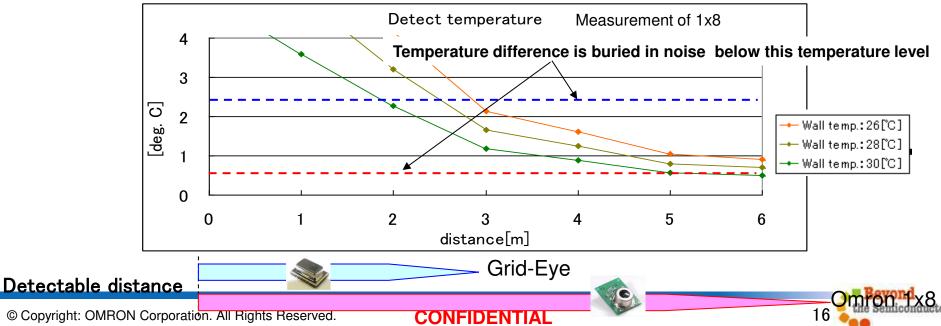
## Comparison with Grid-Eye



|                               | Omron(4x4)          | Omron(1x8)    | Grid-Eye(8x8)          |
|-------------------------------|---------------------|---------------|------------------------|
| Size                          | 18.0 × 14.0 × 8.0mm |               | 11.6 × 8.0 × 4.3mm     |
| Number of pixel               | 16(4x4)             | 8(1x8)        | 64(8x8)                |
| Viewing angle                 | 44deg               | 3deg x 32deg. | 60deg                  |
| Interface                     | I2C(Standerdl mode  | e -100kHz)    | I2C(Fast mode -400kHz) |
| Output mode                   | Temperature data    |               | Temperature data       |
| Detection Temperature range   | 0 to 50deg.C        |               | -20 to 100deg.C        |
| Temperature output resolution | 0.1deg.C            |               | 0.25deg.C              |
| Frame rate                    | 4Hz                 |               | 10Hz                   |
| External interface            | I2C                 |               | I2C                    |




© Copyright: OMRON Corporation. All Rights Reserved.


## Comparison of detectable distance

OMRON

Comparison of sensor output



Actually it is possible to detect the person in the case that temperature difference of whether or not person is more than double NETD. The diagram below indicates temperature difference of whether or not person in a view area and detectable distance.









© Copyright: OMRON Corporation. All Rights Reserved.