

通讯协议

读卡器使用串口转 USB 方式接入电脑,使用 SPP 协议(Serial Port Profile/蓝牙串口)接入手机。所以不管是电脑还是手机,都使用串口协议和读卡器通讯。

串口的接口参数如下:

	电脑 (USB接口)	手机 (蓝牙 3.0 SPP)
波特率	230400bps	115200bps
数据位	8位	8位
停止位	1位	1位
奇偶校验	无	无
数据流控制	无	无

控制器(电脑/手机)通过串口操作读卡器,接收读卡器上报的标签信息,向读卡器发送各种控制指令。

消息格式如下:

地址	0	1	2	3	4	5	6	7	:	Z	N+1	N+2
字段	前导	字节	命令	长度		消息内容				CRC	校验	
示例	55	AA	02	06	00	19	F0	A0		01	32	54

【前导字节】2个字节的固定值(0X55、0XAA),是一个新的数据包的判断标志。

【命令】1个字节,说明该消息的具体含义,如下:

命令值	名称	方向	说明
1	读标签	控制器←读卡器	读卡器读到标签 ID,发送给控制器。
2	呼叫标签	控制器→读卡器	控制器呼叫指定的标签 (声光提醒)
3	透传请求	控制器→读卡器	控制器请求读卡器和标签建立数据透传通道
4	透传应答	控制器←读卡器	读卡器反馈数据透传建立结果 (成功/失败)
5-9	保留		
10	蓝牙参数查询请求	控制器→读卡器	查询蓝牙名称和配对密码
11	蓝牙参数查询应答	控制器←读卡器	
12	蓝牙参数设置请求	控制器→读卡器	设置蓝牙名称和配对密码
13	蓝牙参数设置应答	控制器←读卡器	
14	设备版本查询	控制器→读卡器	查询设备版本

15	设备版本应答	控制器←读卡器	应答设备版本
16	设备握手请求	控制器←读卡器	通过握手,设备判断软件是否在运行。
17	设备握手应答	控制器→读卡器	

呼叫功能需要和声光标签配合使用,透传功能需要和数传标签模块配合使用。

【长度】1个字节。后面单元"消息内容"的长度。

【消息内容】由各条消息自行规定。

【CRC 校验】消息(除前导字节外)的 CRC16 的计算结果。用来保证消息的完整性。

(1) 读标签消息 (0X01)

消息内容:

卡号	属性	扩展数据	RSSI值
4字 节	1字节	0~7字节	1字节

【卡号】4个字节,标签的号码。

【属性】1个字节,存放标签类型、欠压标志、扩展数据长度等内容。

位:7	6	5	4	3	2	1	0
打	 	 度 	运动标志		 标签类型 		欠压标志

位 0 欠压标志。1: 欠压 0: 正常

位 1-3 标签类型。0: 普通标签 1: 声光标签

位 4 运动标志。该位只有运动检测标签才有效。0:标签静止 1:标签运动

位 5-7 扩展数据长度。必要时,标签可以上传一些扩展数据(如湿度、湿度等数

据) ,扩展数据区紧跟属性字节,长度可以为0-7个字节。

【扩展数据】0—7 个字节,扩展数据的长度在属性字节中说明,可以携带一些标签特有的数据,如温度、湿度等数据。最多可以有 7 个字节,也可以没有。

【RSSI 值】1 个字节,定位天线接收到该标签数据的信号强度值,通过该信号强度值可以换算出标签离定位天线的距离。

(2) 呼叫标签消息 (OXO2)

控制器通过串口向模块发送呼叫标签指令,让指定的标签发光发声,方便用户可以快速找到标签。

消息内容:

地址	0	1	2	3	4		
字段	7	标签ID					
示例	00	19	F0	A0	01		

【参数】字节为呼叫模式。

一般定义如下 (各声光标签定义可能略有不同)

呼叫模式	说明
0	仅绿灯闪烁
1	绿灯闪烁+蜂鸣器响
2	仅红灯闪烁
3	红灯闪烁+蜂鸣器响
4	仅红绿交替闪烁
5	红绿交替闪烁+蜂鸣器响
255	停止提醒

读卡器收到控制器的启动指令后,在5秒内会保持对指定标签的提醒操作。如果控制器需要连续不断的呼叫标签,就需要控制器不停的发送呼叫指令(建议每秒1次)。读卡器如果连续5秒没有收到呼叫指令,会自动停止标签的声光提醒操作,这样可以确保,控制器与读卡模块通讯意外中止时,读卡器也会及时停止提醒操作。

读卡器支持最多 80 个标签的并发提醒操作,当需要同时呼叫多个标签时,可以发多条指令,也可以在一条指令包含多个标签信息(由于包长限制一包最多呼叫 32 个标签)。

比如,同时呼叫 2 个电子标签(1805100、1904212),可以发如下呼叫指令: 55 AA 02 0A 00 1B 8B 2C 01 00 1D 0E 54 01 82 3F

55 AA : 前导字节

02 : 命令 (呼叫标签)

0A : 长度 (10字节)

00 1B 8B 2C: 标签ID (1805100) 01: 模式 (发光发声)

00 1D 0E 54: 标签ID (1904212)

01 : 模式 (发光发声)

82 3F : CRC校验

(3) 透传请求消息 (0X03)

控制器通过串口向模块发送数据透传切换指令,切换成功后,读卡器和标签会建立一个点对点的透明数据传输通道。控制器(单片机)发给读卡器的数据,经无线传输后,会由标签发给对端的控制器,反向亦然。

建立透传通道后,控制器每次传输的数据长度应控制在 120 个字节内,如一定要发送超长的数据,应在串口发送完部分数据 (小于 120 个字节)停留一小段时间 (大于 5 毫秒)后再接着发送。

消息内容:

地址	0	1	2	3	4	5	6
字段	7	标签ID				创建 超时	退出 超时
示例	00	01	E2	40	01	05	0A

【标签 ID】4 个字节,需要进行透传的标签卡。

【无线频道】1个字节,频道(0~7),共8个频道。是数据透传时采用的无线频道,避免在相同频段上传输数据时相互干扰。

【**创建超时**】1 个字节,创建数传通道等待的最长时间,单位(秒)。超时,没有创建成功,需要控制器再发切换指令,尝试建立通道。有效时长 3~60 秒

【**退出超时**】1 个字节。退出数传通道超时时间,单位(秒)。进入数据透传后,如果通道空闲(没有来往的数据包)超时,自动退出数据透传的状态,回到读卡器/标签模式。有效时长 5~60 秒。

典型示例,读卡器与 ID 为 "123456" 的标签建立数传通道的指令序列如下: 55 AA 03 07 00 01 E2 40 01 05 0A 0D 5B

各字段解释如下:

55 AA	前导字节
03	消息命令 (切换到透传)
07	消息内容长度 (有7个字节的消息内容)
00 01 E2 40	消息内容/标签ID (123456)
01	消息内容/无线频道 (使用1号频道)
05	消息内容/创建超时 (最多等待5秒)
0A	消息内容/退出超时 (10秒没有数据退出)
0D 5B	CRC校验

串口透传的数据包,每包最长 120 个字节,包间隔最小 10ms。超长的数据包会自动截掉超长部分的内容。

(4) 透传应答消息 (0X04)

向控制器应答透传操作的结果,成功或失败。

消息内容:

地址	0	1	2	3	4		
字段	7	标签ID					
示例	00	19	FO	A0	01		

【结果】字节为创建透传通道的结果。0: 成功 1: 失败 2: 超时失败 3: 参数错误 4: 已有透传链接存在

示例: 55 AA 04 05 00 1B 8B 2C 00 9B 34

55 AA : 前导字节

04 : 命令 (呼叫标签)

05 : 长度 (5字节)

00 1B 8B 2C: 标签ID (1805100)

: 结果 (创建透传通道成功)

9B 34 : CRC校验

(5) 蓝牙参数查询请求 (0X0A)

控制器查询读卡器的蓝牙参数

消息内容: 无

(6) 蓝牙参数查询应答 (0X0B)

读卡器返回蓝牙参数

消息内容:

固定为22个字节

字节 0~17: 蓝牙名称。最多 18 个字符的字符串。仅限英文、数字及标点有效。

字节 18~21: 配对密码。固定 4 个字符的字符串。仅限数字有效。

示例: 55 AA 0B 16 44 69 6E 67 53 75 6E 67 2D 53 74 6F 43 6B 00 00 00 00 31

32 33 34 38 7C

55 AA : 前导字节

OB : 命令 (蓝牙参数应答)

16 : 长度 (22字节)

44 69 6E 67 53 75 6E 67 2D 53 74 6F 43 6B 00 00 00 00:

蓝牙名称 ("DingSung-Stock")

31 32 33 34: 蓝牙配对密码 ("1234")

38 7C : CRC校验

(7) 蓝牙参数设置请求 (0X0C)

控制器设置读卡器蓝牙参数

消息内容:

固定为22个字节

字节 0~17: 蓝牙名称。最多 18 个字符的字符串。仅限英文字母、数字、英文符号有效。

字节 18~21: 配对密码。固定 4 个字符的字符串。仅限数字有效。

示例: 55 AA 0C 16 44 69 6E 67 53 75 6E 67 2D 53 74 6F 43 6B 00 00 00 00 31 32 33 34 12 EA

55 AA : 前导字节

OC: 命令 (蓝牙参数设置请求)

16 : 长度 (22字节)

44 69 6E 67 53 75 6E 67 2D 53 74 6F 43 6B 00 00 00 00:

蓝牙名称 ("DingSung-Stock")

31 32 33 34: 蓝牙配对密码 ("1234")

12 EA : CRC校验

(8) 蓝牙参数设置应答 (0X0D)

读卡器返回蓝牙参数设置完成

消息内容: 无

(9) 设备版本查询 (OXOE)

控制器查询读卡器设备版本。

消息内容: 无

(10) 设备版本应答 (0X0F)

读卡器返回设备版本

消息内容:

地址	0	1	2	3	4	5		31	
字段	主版本	子版本		版本描述					
示例	01	02	32	30	32	30	•	00	

主版本号: 1个字节

子版本号: 1个字节

版本描述: 30 个字节。存放版本的字符串描述信息,以字符串结束符 '\0'结尾。

示例: 55 AA 0F 20 01 02 32 30 32 30 2F 31 32 2F 31 35 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 39 A0

55 AA : 前导字节

OF: 命令(设备版本应答)

20 : 长度 (32字节)

01 02 : 设备版本 (V1.02)

: 版本描述 ("2020/12/15")

39 A0 : CRC校验

(11) 设备握手请求 (0X10)

读卡器固定每3秒发握手请求查询一次,如果连续3次没有收到控制器应答消息,可以判定控制器(软件)已离线。

消息内容:

固定为2个字节

字节 0: 设备运行状态。0: 蓝牙未连接 1: 蓝牙已连接

字节 1: 设备电池电量,数值 0~100,对应电量 0%~100%。

示例: 55 AA 10 02 00 50 18 A5

55 AA : 前导字节

10 : 命令(设备状态应答)

02 : 长度 (2字节)

00 : 设备状态 (蓝牙未连接)

50 : 电池电量 (80%)

18 A5 : CRC校验

(12) 设备状态应答 (0X11)

控制器响应读卡器的握手请求消息。

控制器(软件)如果长时间没有到握手请求消息,则判定设备已离线。

消息内容:无

示例: 55 AA 11 00 E0 0D